The Use of Reinforced Thermoplastic Pipe to Rehabilitate Pipelines to Restore Integrity and to Eliminate Ongoing Corrosion Concerns

John Wright and Peter Han of Specialty RTP
Agenda

• What are Reinforced Thermoplastic Pipes and Why Use them
• Rehab Example
• Critical Issues In Oilfield Environments
 • Overall
 • Liners
 • Reinforcement
 • Outer Jacket
• Test Criteria to Assess Polymers
 • Liners
 • Reinforcement
 • Outer Jacket
• Third Party Testing and Standards
• Questions
What are Reinforced Thermoplastic Pipes (RTP)?

- Three Layer Construction
 - Inner Barrier Layer
 - Reinforcement Strength Layer
 - Outer Protective Jacket
- Each Layer is Independent of One Another
 - Flexibility
 - Thermoplastic High Creep Properties Don’t Significantly add Strength when bonded together
Benefits of Reinforced Thermoplastic Pipes for Rehabilitation and New Installation

• Light Weight and Flexible Continuous Spools
 • Light Duty Equipment
 • Dramatically Reduces Installation Costs

• Corrosion Resistance
 • No Ongoing Corrosion Inhibitors
 • Must Select Correct Polymers

• Easy Pipeline and Tubing Integrity Management
Why Rehabilitation? Installation Example

- 6” 1.9 Mile Offshore Pipeline with Integrity Issues
- Hydrocarbons, Saltwater and 4,000PPM H2S
- RTP Design:
 - PPS Lined, Aramid Fiber Reinforced, PP Jacketed
 - 1600PSI Rated Pressure
 - Inconel 625 Unions
- In Line Test Spools
- 3 Day Install, 80% Less Capex vs. New Steel Line
- No ongoing Corrosion Inhibitors
Why is Material Selection Important?

• RTP was Originally Designed for Salt Water Flow Lines at Relatively Low Temperature (< 50°C)
• Acceptance in the Market Place has Increased the Applications for RTP
 • Oil/Condensate
 • H₂S
 • High Temperature
• Polymers Originally Used in RTP (HDPE) are not necessarily Acceptable for New Applications
• Operators need a Process to Evaluate Polymers and Reinforcements for RTP for Their Applications
Critical Issues for RTP in the Oilfield for Rehabilitation and New Installations

- Chemical Compatibility With Current Environment
 - Hydrocarbons . . . Oil, Gas, Condensate, Aromatics, Brine
 - Brine: 0 to 200,000PPM Salts
 - Wet CO₂ and H₂S
 - Up To 50% in Flow Lines
 - Up to 100% for Injection

- Permeation

- Temperature
 - Increasing with Horizontal Drilling
 - Secondary Recovery and Additional Water can Increase Temperature at Surface

- Abrasion . . . Sand, Coal Fines

- Flow Characteristics
 - Static vs. Cyclic
 - Pressure Spikes, Shut in Issues etc.

- Design Life

- Weight and Flexibility
Critical Issues Liners

- Material Selection is Very Important for Application
 - Temperature Dependent
 - Fluids Dependent
 - Interaction among Fluids
- Permeation of Product through Liner
- Abrasion Resistance
- Toughness
- Performance for a Range of Temperatures
 - Cold Temperature
 - Hot Temperature

Industry JIP Study Newcastle
Chemical Compatibility for Liners

• Looking for Stabilization of Properties Over Time
 • Polymers Can Increase or Decrease in Properties
 • Always Changes from Dry As Molded
• Polymer Properties Changes Generally
 • Soften and Swell
 • Hydrolyze and Get Brittle
 • Less Frequently Oxidize
• Elevated Temperature Accelerates Reaction Time
 • Some Polymers Have Limits of High Temperature Properties

Fortron (PPS) Change in Tensile Strength

Source: MERL Study of PPS in Norsok 710 Solution
Liner Chemical Compatibility – Importance of Fluid Interaction

- Plastic Manufacturers Generally Provide Data for Interaction with One Chemical
- A Mix of Chemicals Can Create a Negative Reaction to a Polymer
- Testing should be performed in a Representative Solution for a Proposed Environment

Lifespan Predictions for Nylon 11 in Water And Water/CO2 Mix

Source: Arkema
Liner Chemical Compatibility - Permeation

- Permeation Does not Necessarily Affect Liners
- Permeating Thru Liners Can:
 - Impact Reinforcement Material (Corrosion, Hydrolysis etc.)
 - Cause Pressure Build in Annulus and Impact Outer Jacket
- Highly Temperature Dependent
- Testing Requirements
 - Assure Saturation (Film not Bulk Weight Loss)
 - Compounds have Different Permeation Rates
- Test Entire Pipe Construction to See if Permeation Affects Outer Jacket

![CO2 Transmission Data cc/M²-day](chart.png)
Abrasion Resistance of Liner

• Sand and Coal Fines Can Create Severe Abrasion to Piping Systems

• Plastics are Generally Better than Steel (Not PTFE)

• Taber Abrasion can Give a Good Comparison of Materials

• Flow Tests with Sand Solutions at Maximum Design Velocities is a Better Test

<table>
<thead>
<tr>
<th>Material</th>
<th>Mg/1,000 Cycles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nylon</td>
<td>5mg</td>
</tr>
<tr>
<td>PVDF</td>
<td>5-10mg</td>
</tr>
<tr>
<td>UHMW PE</td>
<td>5 mg</td>
</tr>
<tr>
<td>PTFE</td>
<td>500 mg</td>
</tr>
<tr>
<td>304 Stainless</td>
<td>50 mg</td>
</tr>
</tbody>
</table>

Source: George Fischer DIN S53754 ASTM D1242 C-10 Wheel 1Kg Load
Liners - Other Considerations

- Toughness in Cold Temperature
- Impact Strength
 - Withstand Impacts During Installation
 - Drop Tests on Pipe not Just Coupons
- Creep of Polymers From Under Couplings
- Fatigue Properties for Cyclic Loading Applications
Critical Issues for Reinforcements

• Strength
 • Static
 • Cyclic

• Resistance to Environment
 • Permeation of Compounds
 • Damage to Outer Jacket

• Impact of Bending Upon Reinforcements

• Impact and Bending Resistance
Reinforcements – Static Strength

• Steel Is not Impacted by Creep Stress Rupture (Barlow Equation for Strength)
• All other Reinforcements’ Long Term Strength Determined by Stress Rupture Testing
 • ASTM D-2992 Proc B
 • Impacted by Temperature
 • Well Established in Industry
 • Test on Pipe as well as Raw Reinforcement
 • Some Reinforcements have no Construction Effect

"Long Term Creep and Stress Rupture of Aramid Fibers" Fallatah, Dodds, Gibson
Reinforcements - Cyclic Strength

- ASTM D2992 Proc. A is too Difficult
 - Requires Predicting Cycles to Failure
- Alternative Method
 - Cycle Pipe Samples over Customers Cyclic Range
 - Run Cycles equivalent to life span of Product
 - Compare Un Cycled Samples to Cycled Samples for Burst Strength
- Required for Cyclic Application - Rod Pumps, PD Pumps etc
Reinforcements – Chemical Resistance

Hydrolysis of Aramid Fibers in Acidic Environments

- Resistance to:
 - Permeation of Fluids Including Hydrocarbons, CO₂, H₂S
 - Temperature Dependent
- Assume Breach in Outer Jacket:
 - Resistance to Exterior Environment
 - Well or Ground
- Data Should be Vendor Specific

Source: Teijin

Aramid fiber type

Aramid A (100%)
Aramid B (88%)
Aramid C (31%)

56 days at 90°C, pH=4

Retained breaking strength [%]
Reinforcements – Other Considerations

• Pressure Hold at MAOP at Minimum Prescribed Bend Radius
 • Does Reinforcement Spread during Bending
 • Uneven Load of Reinforcement
• Drop Test on Finished Pipe to See if Reinforcement may be Damaged from Impact
Outer Jacket – Critical Issues

• UV Resistance
 • Buried, In Well or Surface Application
 • Storage Life Requirements
 • UV Inhibitor can have an Impact on Temperature (Carbon Black, TiO₂ White)
 • Testing of UV based Upon Weatherometer Data

• Abrasion Resistance
 • Dragging on Ground
 • Dragging in Casing
 • Same testing as Liner

• Material Selection for Outer Environment
 • Ground or Surface
 • In Well Same as Liner Requirements
 • Same Testing as Liner
Test Criteria Available in the Market

• API 15S
 • Focus on Strength
 • API 17J Provides Good Test Criteria for Material Selection (Exclude Dynamic Loading)
 • API 17E Similar to 17J but for Hoses for Umbilicals
 • Cyclic Loading is Optional but should be Required by Operators with Such Environment

• Non-Lab Tests Can Enhance the Comfort with Material Selection for an Application
 • Abrasive Flow Tests
 • High Temperature Gas Pressure Tests for Permeation Impact on Finished Pipe System
 • Coupling Retention Tests
Conclusion

• The Marketplace is Familiar with Steel and its Strength vs. Corrosion Characteristics
• Polymers React Differently than Steel and need to be Tested to Determine Proper Performance
• Critical Issues for Polymers:
 • Chemical Compatibility with Environment (As a Whole)
 • Temperature
 • Permeation
• Performance of One layer can Impact another layer of the RTP System
 • Permeation of the liner Affect on Reinforcement and Outer Jackets
• Metallic Coupling Material Selection Not Addressed